Markov Logic Network Hung-yi Lee

Markov Logic Network

Textbook

Domingos, Pedro, and Daniel Lowd. "Markov logic: An interface layer for artificial intelligence." *Synthesis* Lectures on Artificial Intelligence and Machine Learning 3.1 (2009): 1-155.

Markov Logic

An Interface Layer for Artificial Intelligence

Pedro Domingos Daniel Lowd

SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING

Ronald J. Brachman and Thomas G. Dietterich, Series Editors

More Reference

- Course:
 - http://homes.cs.washington.edu/~pedrod/803/
- Toolkit:
 - Alchemy: http://alchemy.cs.washington.edu/
 - Tuffy: http://i.stanford.edu/hazy/hazy/tuffy/

Machines use logic as humans?

This is also a structured learning problem.

Evaluation:

- Evaluate how logical a possibility is based on the knowledge base
 - Using as graphical model (?)

Inference:

 Evaluate all possibilities and find the most logical one

Training:

Learn the knowledge base

Terminology

- Knowledge base: a set of Formulas
- Formula: $P \Rightarrow Q$, $P \Leftrightarrow Q$...
 - Conjunction of *predicates* by logic operation
 - Logic operation: \sim , \wedge , \vee , \Rightarrow , \Leftrightarrow
- Predicate: P, Q
 - Predicate is a function
 - Input: one or several objects
 - Output: True or False

Predicate:

Formula:

姓宇智波(x) 有寫輪眼(x)

姓宇智波(x) ⇒有寫輪眼(x)

Terminology

- *Grounding*: Replace the variables in the predicates with all possible constant
- Example:
 - Predicate: 宅(x)
 - x: is a variable which can be any person

Person = {Anna, Bob} constant

Terminology

World: 一個可能的情況

- World: Grounding all the predicates, and assign a truth value to each grounded predicate
 - Predicate: 是朋友(x,y), 宅(x), 做研究(y)
 - Person: {A, B, C}

```
是朋友(A,B)
是朋友(A,B)
                                  =F
           =T
                       是朋友(B,C)
是朋友(B,C)
                                 =F
          =T
                       是朋友(A,C)
是朋友(A,C)
                                 =F
          =T
                       宅(A)
宅(A)
                                  =F
          =T
宅(B)
                       宅(B)
                                  =F
          =T
                       宅(C)
宅(C)
                                  =F
           ΞΤ
                       做研究(A)
做研究(A)
                                  =F
          =T
                       做研究(B)
做研究(B)
                                  =F
          =T
                       做研究(C)
做研究(C)
```

Evaluation — Logic

Evaluating a world is logic or not given a knowledge base

Knowledge Base L:

Person:

World U:

$$L(U) = T$$

是朋友(A,B) =T 宅(A) =T 宅(B) =T 做研究(A) =T 做研究(B) =T

World U':

$$L(U') = F$$

Inference - Logic

Knowledge Base L:

```
宅(x) ⇒做研究(x)
是朋友(x,y) ⇒ (宅(x) ⇔ 宅(y))
```

Evidence:

是朋友(A,B) =T 宅(A)=T

World U: χ (evidence)

```
是朋友(A,B) =T
宅(A) =T
宅(B) =?
做研究(A) =?
做研究(B) =?
```

Check the 8 possible worlds

By L(U)

γ (to be inferred)

There is only one logical world.

Evaluation — Soft Logic

The real world is complex.

$$L(U) = logical or not$$
 $L(U) = how logical it is$

 Each formula is assigned a weight representing confidence score.

```
1.5 宅(x) ⇒做研究(x)
1.1 是朋友(x,y) ⇒ (宅(x) ⇔ 宅(y))
```

When a world violates a formula, It becomes less probable, but not impossible

Evaluation — Soft Logic

• L(U): How logical a world U is given knowledge base L

Sum over all formulas in knowledge base

$$L(U) = \sum_{i} w_{i} \underline{n_{i}(U)}$$

Weight of formula i

No. of times formula *i* is true

 Probability point of view: (The probability that the world U appears.)

$$P(U) = \frac{e^{L(U)}}{\sum_{U'} e^{L(U')}}$$

Inference – Soft Logic

 Given a world U = {X, Y}, X is known, find the most possible Y

$$\tilde{Y} = \arg \max_{Y} L(X, Y)$$

$$= \arg \max_{Y} \sum_{i} w_{i} n_{i}(X, Y)$$

$$\tilde{Y} = \arg \max_{Y} P(Y|X)$$

$$= \arg \max_{Y} \frac{e^{L(X,Y)}}{\sum_{Y'} e^{L(X,Y')}}$$

You can use Gibbs sampling if you do not know how to solve the problem.

Example

$$w_1$$
 1.5 皂(x) ⇒做研究(x) f_1 Person = {Anna}

If we observe that 宅(A) = T

宅(A)	T	T	F	F
做研究(A)	Т	F	Т	F
$n_1(U)$	1	0	1	1
L(U)	1.5	0	1.5	1.5
P(U)	0.31	0.07	0.31	0.31

Evidence:

是朋友(A,B) =T 宅(A)=T

Person = {Anna, Bob}

做研究(A)	宅(B)	做研究(B)	$n_1(U)$	$n_2(U)$	score	Prob
Т	Т	Т	1+1=2	1	4.1	0.43
Т	Т	F	1+0=1	1	2.6	0.10
Т	F	Т	1+1=2	0	3.0	0.14
Т	F	F	1+1=2	0	3.0	0.14
F	Т	Т	0+1=1	1	2.6	0.10
F	Т	F	0+0=0	1	1.1	0.02
F	F	Т	0+1=1	0	1.5	0.03
F	F	F	0+1=1	0	1.5	0.03

Q: Bob 是否喜歡做研究?

A: 70% 的機率 Bob 喜歡做研究

Graphical Model

Each ground predicate is a node.

The formulas are Factors.

$$w_1$$
 1.5 宅(x) ⇒做研究(x) f_1 w_2 1.1 是朋友(x,y) ⇒ (宅(x) ⇔ 宅(y)) f_2

$$f_1$$
 (宅(x),做研究(x)) = $\begin{cases} w_1 & (宅(x) \Rightarrow 做研究(x)) \text{ is true} \\ 0 & otherwise \end{cases}$

是朋友(A,B)
$$f_2$$
 (是朋友(A,B),宅(A),宅(B)) f_2 + f_1 (宅(A),做研究(A)) f_1 f_2 f_3 (包), 做研究(B) f_4 f_4 (包), 做研究(B) f_4 f_5 (包), 做研究(B) f_6 f_6 f_7 f_8 f_8

$$w_1$$
 1.5 宅(x) ⇒做研究(x) f_1 w_2 1.1 是朋友(x,y) ⇒ (宅(x) ⇔ 宅(y)) f_2

(是朋友(x,y) \Rightarrow (宅(x) \leftrightarrow 宅(y))) is true $f_2($ 是朋友(A,B), 宅(A), 宅(B))= $\begin{cases} w_2 \\ 0 \end{cases}$

Graphical Model

Factor Graph

Markov Random Field

This is why the model is named *Markov Logic Network*

Learning

- Given a set of formulas $\{F_1 \cdots F_i \cdots F_N\}$ and world U, assign weights $\{w_1 \cdots w_i \cdots w_N\}$ for each formulas
- Maximizing the likelihood of world P(U)

$$P(U) = \frac{e^{L(U)}}{\sum_{U'} e^{L(U')}} \quad L(U) = \sum_{i} w_{i} n_{i}(U)$$

$$log P(U) = L(U) - log \sum_{U'} e^{L(U')}$$

Gradient ascent:
$$w_i \leftarrow w_i + \eta \frac{\partial log P(U)}{\partial w_i}$$

Learning

If there is some missing data in the world

U 是朋友(A,B) =T是朋友(A,B) =T是朋友(B,C) =T是朋友(B,C) Observed = ? Hidden 是朋友(A,C) =T是朋友(A,C) =Tworld world 宅(A) =T宅(A) =?~ 宅(B) =T宅(B) $=\mathsf{T}$ 宅(C) =T宅(C) =3 做研究(A) =T做研究(A) =T做研究(B) =T做研究(B) =? 做研究(C) =T 做研究(C)

Learning

- If there is some missing data in the world
 - X: observed part of the world, H: missing part

$$\frac{\partial log P(X)}{\partial w_i} = \sum_{H'} P(X, H') n_i(X, H')$$
$$- \sum_{X', H'} P(X', H') n_i(X', H')$$

Learning the Correctness - UW-CSE database

- Available: http://www.cs.washington.edu/ai/mln/database.html
- 1158 constants: person, course, paper title
- 22 predicates: Professor(x), AdvicedBy(x,y)
- 4M grounding predicates, 3k are true
- 94 hand-crafted formulas are given
- Learn the weight
 - The formulas with the highest weights
 - (course c is taught by x) => (x is a professor) 3.5
 - (x is advised by y) => (y is the co-author of the paper x published) 3.1

Outlook

- Markov Logic Network can learn more than just weights
- It can
 - Discover the knowledge
 - Discover the predicates
 - Transfer Learning
 - Unsupervised Learning
- Markov Logic Network can be used in general supervised learning like classification
 - Not especially powerful, but interpretable